If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0.0399x2 + 2x + -75 = 0 Reorder the terms: -75 + 2x + 0.0399x2 = 0 Solving -75 + 2x + 0.0399x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 0.0399 the coefficient of the squared term: Divide each side by '0.0399'. -1879.699248 + 50.12531328x + x2 = 0 Move the constant term to the right: Add '1879.699248' to each side of the equation. -1879.699248 + 50.12531328x + 1879.699248 + x2 = 0 + 1879.699248 Reorder the terms: -1879.699248 + 1879.699248 + 50.12531328x + x2 = 0 + 1879.699248 Combine like terms: -1879.699248 + 1879.699248 = 0.000000 0.000000 + 50.12531328x + x2 = 0 + 1879.699248 50.12531328x + x2 = 0 + 1879.699248 Combine like terms: 0 + 1879.699248 = 1879.699248 50.12531328x + x2 = 1879.699248 The x term is 50.12531328x. Take half its coefficient (25.06265664). Square it (628.1367579) and add it to both sides. Add '628.1367579' to each side of the equation. 50.12531328x + 628.1367579 + x2 = 1879.699248 + 628.1367579 Reorder the terms: 628.1367579 + 50.12531328x + x2 = 1879.699248 + 628.1367579 Combine like terms: 1879.699248 + 628.1367579 = 2507.8360059 628.1367579 + 50.12531328x + x2 = 2507.8360059 Factor a perfect square on the left side: (x + 25.06265664)(x + 25.06265664) = 2507.8360059 Calculate the square root of the right side: 50.078298752 Break this problem into two subproblems by setting (x + 25.06265664) equal to 50.078298752 and -50.078298752.Subproblem 1
x + 25.06265664 = 50.078298752 Simplifying x + 25.06265664 = 50.078298752 Reorder the terms: 25.06265664 + x = 50.078298752 Solving 25.06265664 + x = 50.078298752 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-25.06265664' to each side of the equation. 25.06265664 + -25.06265664 + x = 50.078298752 + -25.06265664 Combine like terms: 25.06265664 + -25.06265664 = 0.00000000 0.00000000 + x = 50.078298752 + -25.06265664 x = 50.078298752 + -25.06265664 Combine like terms: 50.078298752 + -25.06265664 = 25.015642112 x = 25.015642112 Simplifying x = 25.015642112Subproblem 2
x + 25.06265664 = -50.078298752 Simplifying x + 25.06265664 = -50.078298752 Reorder the terms: 25.06265664 + x = -50.078298752 Solving 25.06265664 + x = -50.078298752 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-25.06265664' to each side of the equation. 25.06265664 + -25.06265664 + x = -50.078298752 + -25.06265664 Combine like terms: 25.06265664 + -25.06265664 = 0.00000000 0.00000000 + x = -50.078298752 + -25.06265664 x = -50.078298752 + -25.06265664 Combine like terms: -50.078298752 + -25.06265664 = -75.140955392 x = -75.140955392 Simplifying x = -75.140955392Solution
The solution to the problem is based on the solutions from the subproblems. x = {25.015642112, -75.140955392}
| (x+1)(x-4)-6=0 | | 2/3k-12=30 | | X(-2x-4)=1 | | w^2+(2w+44)=46 | | 1+3x=-7-1x | | 2ln(x-5)=-2 | | 8n+15=15 | | -1(5x+2)=3 | | 2x=360-140 | | -11/36=-7/2x | | 14+x+26+x+12=x+23 | | 2(4+3x)+2(x)=38 | | 6-8x=-50 | | 0=x^2+22x+49 | | 2x=360+140 | | -3+6h+-2+-3+-4h= | | 5x+40=72 | | 12.50*n-50=200 | | C+87=97 | | x-64=26 | | 2n-9-5-2.4n+4= | | -21=96b+30b | | 8/9=x/9 | | 3c+5=29 | | x+82=16 | | x^2-9x-x-24=0 | | -4x^2=3x^2-6x | | (3x-1)(3x-1)-5=0 | | 3(x-6)=6x+3 | | r+(-11)=-4 | | 12x-78=2x+132 | | 3(3-y)+1=33 |